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Riemannian geometric approach to critical points: General theory
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The postulate thathe thermodynamic Riemannian curvature scalar is inversely proportional to the free
energyis generalized to cases with more than two independent thermodynamic variables. In the appropriate
thermodynamic coordinates, the resulting partial differential equation has as a solution a free energy in the
form of a generalized homogeneous function. In addition, linear transformations of the variables leave the
functional form of the solution unchanged. These findings are consistent with expectations from scaling and
universality. Analyzed in some detail are “corrections to scaling,” where one “irrelevant” variable is added
to a “relevant” ordering field and the temperature. The ratio of the corrections to scaling amplitudes is
computed for the heat capacity and the susceptibility along the critical isochore. Two solution branches result,
in the form of exact equations in terms of the critical exponents. The first solution branch is in good agreement
with other calculations of this universal ratio. With three variables, our scaled equation of state is not deter-
mined uniquely in terms of just a single set of critical exponents. How this relates to the modern theory of
critical phenomena is discussd&1063-651X98)10505-4

PACS numbes): 05.70—a, 02.40-k, 05.40+j, 64.10+h

INTRODUCTION linear transformations of these variables leave the functional
form of the solution unchanged.

Purely thermodynamic theories of critical points date In addition, | examine in some detail a problem involving
back to van der Waald], whose celebrated equation of state three-dimensional Riemannian geometries, in which we have
yielded a liquid-gas phase transition and critical point. Lan-2 temperature and two ordering fields, one “relevant” and
dau [2] genera"zed this approach in the form of classical Orthe other “irrelevant”[4]. The latter leads to corrections to
mean-field theories, which are based on the assumption thte usual asymptotic critical properties. Using series expan-
the free energy is analytic at the critical point. sions in powers of small fields, | compute the corrections to

Despite the effectiveness of mean-field theories, they déhe scaling amplitude ratio of the heat capacity to the suscep-
not agree with experiment, differing, for example, in the val-tibility. Two solution branches result, each an exact formula
ues of the critical exponents. Widof8] suggested that the in terms of_the critical exponents. One of the two solution
basic structure of mean-field theory be extended by means &fanches yields numbers in good agreement with known re-
nonclassical critical exponents and the assumption that theults. Discussion is also given of the lack of uniqueness of
free energy is a genera"zed homogeneous function Of itgur resul“ng Scaled equ.a..tlon of state and hOW th|S I’e|ateS to
arguments. This scaling hypothesis and the further assumge modern theory of critical phenomena.
tion of universality form the foundations of the modern
theory of the critical poinf4]. This structure is supported by |. INTRODUCTION TO THE RIEMANNIAN GEOMETRY
statistical-mechanical models and renormalization-group OF THERMODYNAMICS
theory. ) ) ]

Phase transitions and critical phenomena may also be ap- For the Riemannian geometry of thermodynamics, | use
proached thermodynamically by Riemannian geometry, witfhe notation of Ref| 7], based roughly on that of Call¢8].

a metric related to thermodynamic fluctuati¢bs-7]. For the ~ The initial discussion is pitched in terms of fluid mixtures,
case oftwo independent thermodynamic variables, it hasbut the formalism is readily ge_nerahzed to include magnetic
been postulated thaie Riemannian curvature scalar is pro- Systéms, a language | turn to in Sec. IV.

portional to the inverse of the free enerdince this curva- ~For a general, opem,-component fluid mixture system
ture may be written in terms of the third and lower deriva-With fixed volumeV, denote by

tives of the free energy, this postulate leads to a third-order

partial differential equatiofPDE) for the free energy. A X=(U,N*N?,....N") 1)
generalized homogeneous function of its arguments is a so-

lution and specifying the values of the critical exponentsthe standard extensive quantities in the entropy representa-
results in a full scaled equation of state. tion. HereU is the internal energy ard,N2,... N" are the

In this paper | generalize the curvature postulate to casewmole numbers of the chemical species. The voluvhés
with more thermodynamic variables, corresponding to Rie-omitted from the parameter list since its value does not fluc-
mannian geometries with dimension larger than 2. It is demtuate. It, rather than one of the mole numbers, is picked as
onstrated that, with the proper variables, a solution for thehe fixed system scale because we are interested in intrinsic
free energy in arbitrary dimension is a generalized homogeproperties of fluids and certainly do not wish to impose arti-
neous function, consistent with expectations from the modficial boundaries to impede the flow of the constituents. The
ern theory of critical phenomena. It is also demonstrated thatolume is the only choice of system scale involving no arti-
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TABLE I. Notation for important quantities.

Notation Meaning
F=(UT,—pYT,...,— u'IT) intensive parameters in the entropy representation
R Riemannian curvature scalar
T temperature
Tc critical temperature
Y scaled equation of state
a standard densities in the entropy representation
a,b,c critical exponents
dli,j] free-energy series coefficients
Oap metric elements
h relevant ordering field
kg Boltzmann'’s constant
m order parameter
n=r+1 thermodynamic dimension
o] irrelevant ordering field
p pressure
g=ol|t|° irrelevant scaling variable
r number of fluid components
S entropy per volume
t=1-Tc/T reduced temperature
z=h/|t|° relevant scaling variable
K dimensionless universal constant
ul chemical potential of théth species
#(F)=s—3],_oF*a* (=p/T) free energy

ficial internal boundaries. The dimension of the thermody-boundary. The Iargcé\\,O has volumeV,, (tending to infinity
namic state space is=r+1. Frequently used notation is and fixed thermodynamic stafg,. According to the classic

given in Table I. thermodynamic fluctuation theorf2], the probability of
Denote by then-tuple finding F in a small differential elemertF°dF*---dF" is (in
X the Gaussian approximatipn
a=5 2
\4 @ Py(F|Fo)dFdF --dF'

the extensive quantities per volume and by

\Vj n/2 \Vj r
I _ o v
277) exp 5 Wz:O 9., AF#AF

X JgdFodFL:--dF", 5

r

O L @
Tl T!--'y

F=l7 T

the conjugate intensive quantities, whéres the temperature  \ynereAF@=Fa— F¢, the “metric elements”
andut,u?,...,u" are the chemical potentials of thechemi-

cal species. The free energy per volume appropriate t& the 1 P
coordinates is denoted by 9ap= 1 JEIEB’ (6)
B
;
H(F)=s— 20 Frak| = 2) 4 g=de(g,p), 0
=

and kg is Boltzmann’s constant. The metric elements are

wheres is the entropy per volume and the SUPersCipt  eyajuated in the state of maximum entropy, which corre-
(which ranges from 0 ta') denotes which variable in the sponds toF =F.

parameter list. | add that the choice of independent variables™ 1,4 quadratic form

F, together with the choice op/T as the dependent free

energy, is routinely made in the analysis of near-critical (Al)2=g, AFFAFY (8)
point fluid data[9]. #

Set now the context of the fluctuation theory. Consider &onstitutes a positive-definite Riemannian thermodynamic
finite, open subsysterAy of an infinite systemAy, in ther-  metric on then-dimensional thermodynamic state space
modynamic equilibrium. The subsysteAy, has fixed vol- Here and henceforth summation over repeated indices from O
umeV, but the rest of its thermodynamic parametérBuc-  tor is understood. Physically, the interpretation for distance
tuate as particles and energy flow randomly across thbetween two thermodynamic states is clear from(Bg.The
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larger the distance between two thermodynamic states, théne statement of hyperscalifig7] that the inverse of the free
less the probability of a fluctuation between them. energy is proportional t¢“. Combining these components
This basic geometry has also seen other applicationgeads immediately to Eq13).
Weinhold originally used an inner product based on second The extent to which these two parts of the argument gen-
derivatives of the energy to simplify certain thermodynamiceralize to higher thermodynamic dimensionsaspriori, not
computationg10]. Andresen, Salamon, and Befiyl] have  clear. Notice, for example, that in two dimensions there is
used this geometry in the context of finite-time thermody-gnly one independent component of the Riemann tensor and
namics, where the line element represents the entropy dissiy| information basically resides in the scaBr[14]. This
pated during an irreversible process. , makes it easy to pick it out as the essential part of the Rie-
| add that to go from a fluid system to a magnetic ON€mann cyurvature. However, such is not the case in higher

generally requires only that we replace chemical potentialgjimensions and a fundamentally different approach is called
with magnetic fields and densities by magne_tlzatmns. A distor to arrive at a physical law. | will bypass the dual argu-
cussion of this analogy is given by Kitt12] in a general 1 ants above entirely.

context and by Fishdi 3] in the context of the critical point. For guidance, | set down three principles a correct theory
should obey: (i) It should be covariant(i) it should con-
Il. RIEMANNIAN GEOMETRIC THEORY tain in some natural way the known theory in two dimen-
OF THE CRITICAL POINT sions, and(iii) any constant appearing in the theory should
be universal, admitting a multiplicity of solutions.

Let us discuss these principles, starting with covariance.
By covariance, | mean that once the theory has been formu-
a _Ta _Ta b Te® Tk, TJT@ lated, the results computed with it do not depend on the
R pyo™ 0y Ty o™ T gl %y 9 coordinate system picEed to calculate in. Forpexample, a

Of primary interest is the fourth-rank thermodynamic Rie-
mannian curvature tensor, which follows from the metric:

where the Christoffel symbols given thermodynamic state has specific values of its physical
) parameters, such as pressure, entropy, or internal energy, re-
I, =59"(9ug.yT9uy.6~95y.4) (100 gardless of the coordinates we use. The rules of Riemannian

B ) ) geometry are designed specifically to force the proper trans-
andg“” denotes the inverse of the metric tensRiz- The  formation of physical quantities under a change of coordi-

comma notationg in the subscript indicates differentiation nates For example, EQL2) for R will transform as a scalar.
with respect to.the the_rmodynamic coordm&té. Assou— The geometric equatiofild) in two dimensions is not
ated with the Riemannian curvature are the Ricci curvatureritten in a way that manifests covariance singeon the

R .—RH (11) right-hand side of the equation is the natural free energy
ap aup specific to the set of coordinatés This is partly due to our

early, and necessary, singling out of the volume as a special

coordinate. However, when a free energy is picked, it inevi-

and the Riemannian curvature scalar

R=g"R,, . (12) tably comes with a natural set of thermodynamic coordi-

nates. The reason for picking(F) was discussed in some

| follow the curvature sign convention of Weinbef#)4]. | detail in Ref.[7]. Although the arguments are not very rig-
note that with our metricR will have units of volume, in all  orous, they are a productive way to move us forward. To
dimensions. have the right-hand side of the equation consistent with the

For two thermodynamic variables the basic postulate inleft, we are obliged to transforrp as a scalar.
this geometry of thermodynamics is the geometric equation Having stressed covariance, let me say that it certainly

[5-7] does not prevent us from finding special coordinates where
things are in one way or another simplified. TRecoordi-
_ Kg nates allow us to write the metric as the second derivatives of
R=—« @' (13 ¢(F). This allows proof of some special theorems, as we
will see.

wherex is a universal dimensionless constant of order unity. The second guiding principle, that the theory should re-
The word “universal” is used in the sense of the modernduce in some natural way to the known theory in two dimen-
theory of critical phenomena, which | take here to mearsions, is a call for simplicity. The statement of a successful
depends only on the critical exponents, which get introducetheory should transcend dimensionality. It should not be nec-
in the solution procesgl5]. The free energy per volumé¢  essary to reinvent it every time a thermodynamic variable is
includes just the singular part, that associated with criticabdded.
point fluctuations. It goes to zero at the critical point where it  The third principle, calling for universal constants, repre-
becomes infinitely easy to produce fluctuations. Picking thisents a desire for a class of solutions for every value of the
singular part out in the solution process is generally straighteonstants. It is motivated by universality in the modern
forward. theory of critical phenomena, where, for example, many fluid
The original argument for this postulate consisted of duakystems reside in the same universality class. This principle
components. First is the finding thRtis a measure of the rules out all theories where the constants are not dimension-
effective intermolecular interaction strength, specifically, theless. This is because neither statistical mechanics nor the
correlation volumesY. For exampleR is zero in the ideal theory of critical points has universal constants with units
gas and diverges &8 near the critical poinf16]. Second is  other thankg .
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Clearly, the simple equatiofi3) satisfies all three of our whereG*# is the cofactor 00z, in terms of which[18]
principles. | will adopt it in generality, after examining a few

unsatisfactory possibilities. Among proposed theories that do g*f= G 21)
not work consider g
) kg This expression demonstrates some points that prove impor-
R™=—« g (14 tant. Consider some specific index valaeFrom the prop-
erties of the determinangsandG“#, one may see that each
Kg term in the numerator and the denominator of E2) con-
RE'R,,=—k ry (150  tains exactly six derivatives ap with respect to=* [19]. In

addition, each term in the numerator has-31 factors of¢
and each term in the denominator has factors of ¢.

and
These observations allow us to prove two theorems of
RE¢ ,,=—Kg. (16) central importance. Define first the variabis...,z" by
Each violates the second principle, in failing to reduce natu- S F! 22)
rally to the known two-dimensional case. The first two also RED

fail to satisfy the third principle since their constats$ have

units of volume raised to some power and such constant§heree,,...,¢, are arbitrary, constant “critical exponents.”
cannot be universal. The third proposed theory is not covaAlso define¢, to be a constant critical exponent. We have
riant since the second derivatives of scalar functions do ndhe following.

transform as tensors. This problem could, however, be fixed Theorem 1The functional form

by taking the covariant derivative ap, but this does not _E0é 1.2 ;

solve the inconsistency with the second principle. B(F)=[F7|%0Y(2".2%,...7') (23)

Consider also a proposed theory of the form satisfies the geometric equation in the sense that the substi-
9uTE &=k 17) tution of this form reduces the geometric equation to a partial
pr e differential equation for the functioly in terms of the re-

which has a left-hand side not manifestly covariant since th&uced list of variableg®,... z".

Christoffel symbols do not transform as the components of a The proof of this theorem is straightforward and results
tensor[14]. Indeed, it is not possible to form a tensor from since all factors ofF% will cancel out on substituting this
quantities formed from first derivatives of the metric, henceform into the geometric equation, as a consequence of the
the emphasis on curvature. One might argue for a theory lik@roperties noted above of the determinants. Also correct is
Eq. (17) by saying that this form is intended to hold only in the following.

some specific coordinate system and then demand that both Theorem 2If the function ¢(F)=|F° %Y (z},2%,....2")
sides of the equation transform as a scalar. However, abatisfies the geometric equation, then so does the function
though such arguments are plausible for the free energy, they
become increasingly unlikely for derivatives of this quantity.
The adopted equatiofl3) seems to be the simplest postulate
and the best.

¢(F):|)\0F0|¢0Y()\121!)\2221--'!)\rzr) (24)

for all values of the constantsy,\q,...,A,.

The proof again follows from the properties of the deter-
minants in Eq.(20). We may multiply each“ in the geo-
IIl. GENERALIZED HOMOGENEOUS FUNCTION metric equation by a corresponding factor of without

SOLUTIONS changing the form of the equation. That the form of the

geometric equation is unchanged by the transformaitn
— N\ F¢ (no summation intendedestablishes the theorem.
Both these theorems were proved previously in two dimen-

We may readily work out an expression fBrvalid in
arbitrary dimensiom. By Eq. (12),

R=19""9%°g™(9,.,.:9omp— Yo s9ve,n)- (18)  sions[5]. Here we see that they hold more generally.
Theorem 1 embodies the concept of scaling in the theory
The metric identity of critical phenomena. It leads to the usual equalities among
critical exponents, as well as various ways of plotting experi-
9** ,=-9**9*"9,,., (19 mental data for a given fluid so that they fall on the same

curve. Theorem 2 embodies the concept of the universality

was useful in this calculation. The second derivatives of theyf the functionY. For each functiorY, there is a class of
metric elementgfourth derivatives ofp) cancel. | emphasize different fluids with members differentiated by values of the
that thisform of the curvature scalar obtains only with the multiplicative constants\,,. Scaling is then a statement
special form of the metric given in E¢6) and is not coor-  about thefunction ¢(F), whereas universality is a statement
dinate invariant. about what is allowed by theachinerythat gives usp(F),

We may rewrite Eq(18) as in this case a PDE.

I will confine our study to functions of this form. Whether
or not they are unique solutions to the geometric equation is

1
— __GHrRéocTe _
R 49° G GPC™(Qur,9omp = Yoy Gren)r (20 unresolved mathematically, but in the absence of proof to the
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contrary, the possibility of other solutions must certainly be t

admitted. It might then be thought that scaling and univer- coexistence curve

sality have merely been built into the theory, but this is not critical point
the case. They are allowed by the special form of the geo- \ /

metric equation and this constitutes a strong positive result.

Let us prove another theorem of general validity. Con-
sider a linear transformation of the standard intensive vari-
ables

;

F'*=c*+ 2 czF“, (25 FIG. 1. Schematic oft(m) space. It shows the critical point,
u=0 which corresponds to the point of highest temperature at which the

system shows zero magnetizationin the zero ordering fielth. At

where the:c S ar,e all C_onstants._ We may write the metric lesser temperatures the system spontaneously magnetizes in one of
elements in th& ' coordinates using the general tensor transy,,o directions along the coexistence cunre=0).

formation rule[14]

form given in Eq.(27). As we will see, the variableis also
(26) linearly related to thd-*'s. Therefore, the theorems of Sec.
Il all apply in the coordinate systent,f,0).
We may write

, IF* OF”
gaﬁzﬁm Ouv-

Since the partial derivatives of the coordinates are constants,

this leads, with Eq(6) for g,5, immediately to #(t,h,0)=t]2Y(z,0), (28)
1 P
P S where
Yap kg oF "@9F'#" @n
h
We see that the form of the metric elements is exactly the z= mﬁ (29
same inF' coordinates as ifr coordinates. Hence the forms
of the curvature scaldR and the partial differential geomet- o
ric equation are exactly the same in the two coordinate sys- q9= e, (30)
tems. This implies the following. t]

Theorem 3If ¢(F°FL,...,F") is a solution to the geo-
metric equation, thegp(F'%,F'2,... F'") will also be a so-
lution, with the same functior. Furthermore, Theorems
and 2 hold as well with the new variables.

anda, b, andc will denote in this section our three constant
1 critical exponentd23]. | take a>1, b>0, andc<0. The
case withc>0, whereo is also “relevant,” is beyond the
scope of this paper. The reduced temperatueedefined as
This mixing of variables was suggested by Rehr and Mer-
min [20]. It is used routinely in the analysis of fluid data f=1— E 31)
[21]. ST
| mention on the side that one implicit, though not essen-
tial, idea in this approach is th& should in some sense be with T¢ being the critical temperature. As emphasized by
the correlation volume. This certainly appears to be the caskisher[4], this definition agrees with the more traditional
in two dimensions, but, to my knowledge, the only reporteddefinition (T—T¢)/ T up to analytic corrections of ordef.
test of this possibility beyond two dimensions was by theNote, by Theorem 3, that we could haVe /T depend lin-
present author and DaVig2]. We worked ouR for the ideal  early onh ando if we desired. This accommodates a struc-
gas in arbitrary dimension and found that it is small, on theture whereT ¢ varies with the ordering fields.
order of the intermolecular distance. This is certainly consis- Clearly, ast—0, the effect of a changin on the func-
tent with what is expected with a correlation volume inter-tion Y grows, while that of a changing diminishes to in-
pretation. significance. Hence we cal relevantto the asymptotic
critical properties ana irrelevant Define the order param-

IV. SOLUTION IN THREE DIMENSIONS eter associated with as
AND CORRECTIONS TO SCALING
m=d¢y. (32
Turn now to a physical application, corrections to scaling
contributed by an extra independent variable near the criticah the Ising or the Curie-Weiss modet is the magnetiza-
point. Let us set the context with Fisher’s revi¢#l, using tion per spin. We take the function to be an even function
the language of magnetic systems. The free energy is abf h andz. For o—0 and typical values of the critical ex-
lowed to depend on three variables, the reduced temperatuppnentsa andb, we get the familiar critical properties; see
t, defined below, a magnetic ordering fiéldonjugate to the Fig. 1. Of interest in corrections to scaling is how the
order parameter, and a thermodynamic fieldoupling only  asymptotic behavior gets modified as we go away from the
weakly to the critical properties. The fielthsand o are re-  critical point.
garded as proportional 6* andF? or to some linear com- Much studied in the theory of the critical point are uni-
bination of these fields, as in ER5), so the metric has the versal ratios of critical amplitudes. Let me work out an im-
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portant one in corrections to scaling. A series for the free The fourth assumption, of thermodynamic stability, is
energy for smalg andz may be written as connected with the fact that the entropy is a maximum in
equilibrium [2]. This implies that the quadratic form in Eq.

A o (8) must be positive-definite. Necessary and sufficient condi-
¢:tai20 JZO dfi,jlq'z". (33 tions for this ard 26]
Aj=2
From here on out, | take>0 and have no more need for the 9000, (40)
absolute value sign on The first few terms in the series are
oo Yoz
$=d[0,0]t2+d[0,2]t22°h2+d[ 1,0]t2* ¢lo 90 9y~ 0 (41)
+d[1,2]ta20Flelgh?+- -+ (34)
and
For h=0, the heat capacity is corrected to leading order as
Joo Y01 o2
— _ a-2 lel ...
¢ w=a(a—1)d[0,0]t* “(1+ a0t +---), (35 910 911 91 >0. 42)
with the correction amplitude 920 921 922
_(a+|c))(a+]c[-1)d[1,0] 36 Since the geometric equation is symmetrichina sym-
ac= a(a—1)d[0,0] (36) metric boundary conditiotY(0,z) must result in a full solu-
o tion symmetric inz. The serieq33) then applies and ther-
The susceptibility is modynamic stability in {,h,0) coordinates requires
= a-2b lel4...
¢ nn=2d[0,2t7 (1 +a,0t%+- ), 87 d[0,01,d[0.2],d[2,0]>0 43)
with
and
d[1,2]
a,=———. (38 2 2
X d[0,2] 2a(a—1)d[0,0]d[2,0]>(a—c)~d[ 1,0]°. (44)
The ratio Turn now to the solution of the geometric equation with
two variables, which is covered in some detail in the Appen-
+ +lc|—1)d[1 2
& _(@ lcD(a+el - 1)d(1,01d[0.2] (39)  dix. Itis found that we can pick the four coefficiertdf0,0],
ay a(a—1)d[0,0]d[1,2] d[1,0], d[2,0], andd[0,2] arbitrarily subject only to ther-

modynamic stability. The geometric equation in two dimen-
sions will then determine all of the other boundary coeffi-
cientsd[i,0] andd[0,j] uniquely. | interpred[0,0], d[ 2,0],

is expected to be universg24].
Let us now return to the geometric equation. Partial dif-

ferential equations generally have a multiplicity of solutions "
depending on boundary conditions and assumptions abocoggg:]’tz] as scaling constants ani1,0] as an asymmetry

regularity. The PDE appearing here has, to my knowledge, Return now to the solution of the full three-dimensional

not been investigated beyond two dimensi¢@5] and its . : . X
general properties are not known. The search for a solutioE!emann!an geometry. | first galculate the thermodynamic
iemannian curvature scalar with EO). We have

must then rest at this point on some plausible limiting as-
sumptions{i) The free energy is a generalized homogeneous

function of its argumentsdji) the functionY(q,z) is regular _ b.t0®th® 11D oo hoo™ P.nnP 11D 1P hoo®P noot "
at g=z=0; (iii) the two “boundary” functionsY(0,z) and 2= b 10b 10® hnt 20 hoP 10P tnt -1 '
Y(q,0) result from the solution of the geometric equation in (45

two dimensions, with the first function symmetric in
[Y(0,2)=Y(0,—2)], but the second not symmetricip and where a factor ofy has canceled in the numerator and de-
(iv) the solution satisfies thermodynamic stabilitycgtz ~ nominator. This expression is too large to show in totality
=0. because there are 122 terms in the numerator and 5 terms in
The first assumption is the natural form of the solution, aghe square brackets in the denominator. Clearly, a computer
| have discussed. The second assumption seems at leaspmgram for doing symbolic mathematics is highly desirable,
plausible first try since in the modern theory of critical phe-if not essential, for doing such lengthy calculatig@3].
nomena the free energy is expected to be regular except at To compute the constant, | use a basic methodology
phase boundaries. The third assumption stipulates boundagjmilar to that in two dimensions described in the Appendix.
conditions; that these assume neither too much nor too litti€alculate a series fdR¢ to zeroth order ire andg. Then
is, a priori, not clear. That these work will be revealed by the exploit the postulated independence«obn the series coef-
solution process. | take our critical point to be even in theficientsd[i,j]. The six coefficients that appear in the zeroth-
magnetic fielch, but not in the irrelevant scaling fielml As  order series forR¢ are d[0,0], d[1,0], d[2,0], d[0,2],
we will see, alternatives to this last point are not mathematid[ 3,0], andd[1,2]. The first four coefficients may be freely
cally attractive. set, d[ 3,0] follows from the method of the Appendix, and
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d[ 1,2] follows from the method laid out below. If we were to da—4b—4c—4bc—a?+4b2%+4¢c?
setd[1,0] to zero, then both boundary functions would be K= 2(a-1)a : (46)
even in their arguments. Since the geometric equation is an

even function of both its arguments, its solution would thenregardless of the values of the remaining coefficients.

likewise be an even function ard] 1,2] would be zero. In Let us illustrate this solution process with the mean-field
the limits d[1,0]—0 andd[1,2]—0, a somewhat laborious theory exponenta=2, b=2, andc=0. Substituting the se-
computation yields the universal expression ries (33) into the expression for the curvatuf4b) yields

|
R¢=(4d[0,0]d[0,2]d[ 1,0]3d[ 1,2]+d[0,0]?d[ 1,0]?d[ 1,2]2+ d[ 0,0]d[ 0,2]?d[ 1,0]?d[ 2,0]
—7d[0,0]?d[0,2]d[ 1,0]d[ 1,2]d[ 2,0]— d[ 0,0]3d[ 1,2]2d[ 2,0] — 7d[ 0,0]2d[ 0,2]%d[ 2,0]?
+6d[0,01%d[ 0,2]?d[ 1,0]d[ 3,0] + 3d[ 0,0]3d[ 0,2]d[ 1,2]d[ 3,0])/{4d[ 0,2]?
X (—d[1,01>+d[0,0]d[2,0])?} + O(z,q). (47

In the limitsd[ 1,0]— 0 andd[1,2]—0, we getx= 1, regard-  ponents. For the mean-field theory exponefftair spatial
less of the values of the other coefficients. This value isdimensiony a=2, b=32, and c=0, they obtaineda./a,
consistent with Eq(46). Having determined, we may now =+ 1. Equationg493g and(49b) yield a;/a,=+1 and—1,
setd[0,0], d[1,0], d[2,0], andd[0,2] as we like, use the respectively. The first value is in agreement with the known
method of the Appendix to find[3,0], and all of the other value. For this reason, | will pick the first solution branch
boundary coefficients, and solve the zeroth-order term in EJEq. (493] as the true physical one. Written in the language

(47 (=—«) for d[1,2]. of Fisher[4] (see also Ref23)]) it reads
Clearly the value ofd[1,2] will not be unique since it
follows from the solution to a quadratic equation. | offer no ac 1—a+6
method in this paper to decide which of these two roots for 2 A4—a—2A+26 (50
d[1,2] is physically appropriate other than comparisons with X
what is known from other calculations. We may show that, i i ) )
generally ::)offe:1 no physical interpretation for the second solution
ranch.
_ d[1,0]d[0,2] Let us turn to the three-dimensioné8D) Ising model
d[1,2]= (universal constait 400 (48 exponents, which have values near ¥ andb= 2[29]. The

corrections to scaling exponent has value near—3 and
with the universal constant having two solution branchesthe knowna./a,=0.9+0.1[30]. For these exponent values,
denoted by thet sign. The roots to the quadratic equation Eq. (499 yields a./a,=1;=0.79, in agreement with the
are real for all values of the critical exponents. Substitutingknown value.

into Eq. (39) then yields two solution branches for the cor- Once we have picked one of the two values @d., 2],

rections to scaling amplitude ratio: the rest of the series coefficierdfi, ] follow uniquely from
this algorithm.
a._ atlc|-1 49 1.i=1.
a_X_ 2+a—2b+2|c| (499 2. Begin the outer loop. Write the series f¥(q,z) to
ordersq' "% andz'*2. .
a+|c|—-1 3. With this series, compute the series Rap to ordersq'
~ a2 (49D andz,
4.j=0.
These ratios are entirely independent of the series coeffi- 5. Begin the inner loop. From the series R, pick the
cientsd[i,j]. They are hence universal. coefficient of the terngy' ~!Z.

We now turn to comparisons with results from the mod- 6. Set this coefficient to zero and solve algebraically for
ern theory of critical phenomena. Here it is believed that thehe coefficientd[i —j+1,j +2].

order parameter and spatial dimensionalities determine all of 7. j=j+2.

the critical propertie$4]. The three variable solution to the 8. Repeat the inner loop at step 5 urjtiéxceeds.
geometric equation in this section is restricted to an order 9.i=i+1.

parameter dimensionality of unity; the order parametés a 10. Repeat the outer loop at step 2 as long as desired.

scalar. However, the spatial dimensionality is allowed to This algorithm is very direct and simple. The algebraic
vary and enters the theory through the values of the criticaéquation in step 6 has the coefficiediti—j+1,j +2] ex-
exponents. pressed linearly in terms of coefficients that have been pre-
Aharony and Ahler$28] have worked out expressions for viously determined in the solution process. The procedure
the corrections to scaling amplitudes and for the critical exmay be repeated as long as desired, but it becomes increas-
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for d[1,2], corresponding to Eq49b), and found no essen-
tial qualitative difference that would lead me to prefer one
root or another.

The functionY(q,z) found here is not universal in the
sense in this paper of depending only on a single set of
critical exponents and three scaling constants. This is be-
cause, in addition to the scaling constad{®,0], d[0,2],
and d[2,0], Y(q,z) depends on the asymmetry parameter
d[1,0]. In the light of the modern theory of critical phenom-
ena, this additional dependence is perhaps not surprising. Let
me quote from Privman, Hohenberg, and Ahardid]:
“Critical exponents emerge from the ‘local’ properties of the
[renormalization-groupflow in the immediate vicinity of
each fixed point, and they can be calculated from the linear-
ized recursion relations. On the other hand, the scaling func-
_ tions are properties of the complete ‘globdhonlineay
_ FIG. 2. Graph ofv(q,2) as afunction of) andz for the mean- .o nqrmalization-groupflow away from the fixed point un-
field theory exponentsd[0,0]=d[0,2=d[2,0]=1 and d[1,0] = 4o consjderation, along ‘relevant’ trajectories in the param-
=2, and with the principle physical root faf{ 1,2] corresponding  gor gpaceleading to other fixed points or to infinity..”

o Eq. (493. The fun;tlon |s__sn_100thly be.h"’}VEd on the SqUar€This entire issue is clearly deserving of further study, but this
shown. Thermodynamic stability is also satisfied. is beyond the scope of this paper.

) ) . . . Having explored one type of solution to the geometric
ingly time consuming as increases due to the difficulty of ¢qyation in three dimensions, | now turn to some less favor-
computing the series in step 3. My limit in this research waspje nossibilities. Specifically, the following two questions
':7; are addressed. First, one of the boundary functions, but not

Figure 2 shows the scaled free energyq,z) for the e other, has been picked to be symmetric in its variable.
mean-field theory exponents with initial series COEﬁ'C'entSHowever, may they both be symmetric, or neither? Second,
d[0,0]=d[0,2]=d[2,0]=1 andd[1,0]= . Of the two S0-  {he poundary functions have been determined by solving the
lution branches fod[ 1,2] | picked the one in Eq498. The  geometric equation in two dimensions. Is doing so math-
boundary functionY(0,z) is analytic in the whole range ematically necessary, or could we pick all of the boundary
z=*o [5]. The solution curve for the boundary function ¢gefficients freely?

Y¥(q,0) is shown in Fig. 3. It has infinities in the first and  Consider the possibility of boundary conditions that are
second derivatives of nearq=0.76 and—1.46. In Fig. 2, |  symmetric inboth qandz. | tried this for the pair of expo-
have held well back from these limiting values. The full hent sets discussed above, using the method of the Appendix
functionY(q,z) is well behaved on the displayed square andig solve for the boundary coefficients, with1,0]=0. For
satisfies thermodynamic stability. For fixed it is a mini-  poth exponent sets, the series solution method leads to either
mum forz=0. For fixedz, ¢ increases monotonically with inconsistent algebraic equations or complex roots. Hence, at
g. | also computedr(d,z) on this square for the other root |east for these exponent sets, | reject the completely symmet-
ric solution as inconsistent with the geometric equation.

1.0 ~ ~ v The case with neither boundary solution even in its argu-
1F—dii,0r=110]" s ment(i.e., d[ 0,1] #0) results in considerable algebraic com-
o8- 2n Zg plication. It also lacks interest because there seems to be no
- / good physical interpretation for either boundary solution in
0.6 / S this case. Hence | do not consider it further here.
] Let us now turn to the issue of the freedom available in
> 0.4 /! choosing the boundary coefficients. First, if we choose
] J d[3,0] freely, rather than with the method of the Appendix,
0.2 - /s then Eq.(48) would not obtain and the corrections to scaling
1 /4 amplitude ratio in Eq(49) would not be universal. This issue
0.0 / L aside, | tried an entirely free set of boundary coefficients for
i L the pair of exponents values,p,c) discussed above. One
o2 . | ---- el | — a|= — of the boundary coefficient sets corresponds to a symmetric
function and the other does not. No mathematical inconsis-
-0.5 -0.3 -0.1 0.1 0.3 0.5 . . :
y tencies were encountered in the solution process. However,

despite being mathematically viable, free boundary condi-

FIG. 3. Family of solution trajectories iny(v) space with  tiong are not physically very interesting because universality
d[0,0]=d[2,0]=1 and various values aff 1,0] for the critical ex- in no sense obtains

ponentsa=2 andc=0. The limit of thermodynamic stability cor-

responds tdd[1,0]|=1. Trajectories start from the origirg&0) CONCLUSION
and move into the first quadrant fqr-0 and into the third quadrant
for g<0. All the physical trajectories eventually head for,x) In conclusion, | have extended the basic postulate that the

— (o0,00) in the first quadrant, but withg| remaining finite. thermodynamic Riemannian curvature scalar is proportional
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to the inverse of the free energy to an arbitrary number ofeduces this PDE to an ordinary third-order differential equa-
dimensions. The resulting partial differential equation has asion for Y(q) by Theorem 1.

a solution a generalized homogeneous function, in all dimen- Of primary interest are series solutions

sions. Such a form is expected from the modern theory of .

critical phenomena and it embodies scaling and universality. _ i

A linear mixing of the standard intensive variables in the Y(Q):izzo d[i,0lq’. (A4)
entropy representation, in conjunction with a given func-

tional form of the free energy, is also allowed as a solution inThe first three coefficientd[0,0], d[1,0], andd[2,0] may

all dimensions. Such a miXing of variables is rOUtiner Use%e set free|y' Subject On|y to thermodynamic Stabi[ﬂqsl

in the modern theory of critical phenomena. In addition, 1(43) and (44)]. Before the remaining coefficients can be
have worked out the ratio of the corrections to scaling amsglyed for, we must evaluate the constarin Eq. (Al). By
plitude for the heat capacity and the susceptibility on thegyr basic principle for a correct theory, its value depends
critical isochore. Two solution branches result in the form ofgnly on the critical exponents andc and in no way on the
exact equations in terms of the critical exponents. One of thgerjes coefficientsl[i,0]. In particular, this means that
solution branches is in good agreement with what was preghoyld have whatever value it has in the lindft1,0]—0,

viously known. where
Left unresolved are questions centering around the
uniqueness of the solution. The series coefficidirt,0] in (c—1)(2c—a)
three dimensions is not a scaling constant, so the absence of K= Taa-1) (A5)

some preferred value for it means that our equation of state is

not yet universal(Note that this does not affect calculated regardiess of the values of the other coefficients. This expres-
values of the rati@./a,). An additional ambiguity consists sjon results as well from the requirement that the solution be

of the two solution brar.]CheS for the series Coefficid{m,Z]. regu|ar atq: 0 for Symmetric solutions produced by Setting
Generally, a lack of uniqueness is not unexpected in the cory[ 1,0]=0 [5,6].

text of the modern theory of critical phenomena since the | gt ys illustrate witha=2 andc=0. The basic method

scaled equation of state could depend on more than a singinsists of computing a series i to successively higher
critical fixed point. To make further progress on this problemygwers of . By the geometric equatioitAl), only the

ferential equation, one that goes beyond the relatively limiteQjetermination of all of the coefficient{i,0] for i >3. Sub-
series here. In any case, additional ideas are called for. Degjtyting a third-order series fap yields

spite unresolved issues, | feel that the results presented here

represent a clear and significant advance towards computingR¢ = d[ 0,0](d[ 1,0]°d[ 2,0]— 4d[0,0]d[ 2,0]?

equations of state from thermodynamics with the Riemann-

ian geometric method. +3d[0,0]d[ 1,0]d[ 3,0])/4(d[ 1,0]*—d[0,0]d[ 2,0])*

+0(q). (A6)
APPENDIX: SOLUTIONS IN TWO DIMENSIONS

This a_tppendlx_ dlscusses.solunons to the two—d|_menS|on oes to— 1, no matter what the values of the other coeffi-
geometric equation, essential because such solutions consji-

tute the boundary conditions for the three-dimensional prob- ents, andk=1, consistent with EGAS).

. X : At this point, the first three coefficients may be set freely
lem. Such solutions have been discussed previgisy, so and d[ 3,0] follows on setting the zeroth-order term in Eq.

only a brief review is provided. Emphasis is on solutions not A6) to — «. Successively higher-order series expansions of

symmetric about the zero ordering field since these hav ; . L
been less discussed. Hence the focus is on the vamabts . d’ how determ|ne uniquely as many of the remaining coef-
) ficients as desired. For the particular choicd§0,0]

critical exponent, and Fhe _funcnor?{(q) =_Y(O,q). o —d[2,0=1 andd[1,0]=1, the series is
The geometric equation in two dimensions may be written

al{ the limit d[ 1,0]— 0, the first term on the right-hand side
|

[7] 4 5
Y(q)=1+ d +9%+ g3+ i + 27
¢,tt ¢,t0 ¢,00 2 16 160
bt Pio  Pioo 7379° 2623
(Z’,tto ¢,too ¢,ooo __ f (Al) + 320 + 396 (A7)
¢,tt ¢,t0 2 ¢
2 b0 D oo Consider some additional points about the first three se-
' ' ries coefficients. By Theorem ¥, andg may each be mul-
Substitution of a scaling form tiplied by constants and the result will remain a solution to
the geometric equation. In R4E] | took these scaling con-
é=1t|2Y(q), (A2)  stants to bel[0,0] andd[2,0]. In this paper | take them both
to be 1, with no loss of generalit}31]. The coefficient
where d[ 1,0], however, does not represent a scaling constant and in

Ref.[6] it was found that it must be set to zero to reproduce
gq=olt| "¢, (A3) the usual critical point behavior. However, there appears to
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be no reason to require this asymmetry coefficfri,0] to 16 i

be zero in connection with the boundary conditions. In fact, 14 denfiy. V=0

| show in Sec. IV that to get a mathematically consistent 1 |——di1,.01=1/10 ;
solution to the geometric equation in three dimensions, we 27 |77 Z?ﬂg ;

cannot setd[1,0] to zero. Other than this, and thermody- 10 -

namic stability, | bring forth no restrictions ad 1,0]. B
Not essential in our series solution method, but instructive > -
nonetheless, are full solutions to the geometric equation in 6 7

two dimensiong5]. To do this, return to Eq(A1) and make 4 -

the change of variables 5]

x=In[q], (A8) 0 ez ZZZl
. [@=7158,c=-172]
w=In(Y), (A9) 2T U S B
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
dw q
Y= ax~ Y Y', (A10) FIG. 4. Family of solution trajectories iny(v) space with
d[0,0]=d[2,0]=1 and various values aff 1,0] for the critical ex-
and ponentsa= % and c=—3. The limit of thermodynamic stability
corresponds tdd[1,0]|=0.7627. Solutions start from the origin
d?w qY’ q2y" qZ(Y')2 (g=0) and move into the first quadrant fge>0 and into the third
Ve T T+ ~ V2 (A11) quadrant forg<0. All the physical trajectories eventually hit the

curve of singularities where the denominatdy,v) =0 and where

The third-order differential equation fof(q) now reduces to the third derivative ofY diverges, but withq| remaining finite.

a pair of coupled first-order differential equations . i . )
the origin starting at the origin do not go there. The latter is

dv a singular point for all critical exponents and corresponds to
ax_ o) (A12)  the simple coordinate singularity g0 in Eq.(A8). There
is no nonanalytic behavior in the thermodynamic properties
and at the origin. The serie€A7) is used to start the numerical
solution from the origin ¢=0).
dy Figure 3 shows a family of solution trajectories with dif-
dx v (A13)  ferent values ofi[1,0], all in a range allowed by thermody-

namic stability|d[ 1,0]|<1. Asq increases from zero, trajec-

where f(y,v) is a ratio of polynomials iny andv. The tories move into the first quadrant. 4decreases from zero,
solutions to these coupled equations are parametrized trajetrajectories move initially into the third quadrant. Regardless
tories in (y,v) space. of starting direction, all physical trajectories eventually go to

By our general assumptions, it is implicit thae=0 rep-  infinity in the first quadrant, ¥{,v)—(%,%*), but with finite
resents a point on the solution trajectory. The additional askq|. Changing the sign ofi[1,0] has the same effect as
sumptions of analyticity, thermodynamic stability, and thechanging the sign off and adds nothing new to Fig. 3. Any
transformation equationfA10) and (All) then imply that possible physical nature of these solutions is unclear since
g=0 corresponds to therigin in (y,v) space. The transfor- these critical exponents by themselves do not seem to corre-
mation equations further imply that, regardless of the valuespond to those of any known physical system.
of the critical exponents, ifi[ 1,0]=0 the solution trajectory Another pair of exponent values of interestais £ and
starts from the origin with slope 2 anddf1,0]#0 it starts c¢c=—3, where(with d[1,0]=3)
with slope 1. The discontinuity in the limd[1,0]—0 was

discussed in Ref6] and was connected with the preference q ., 488 623° 105351 154*
for symmetric solutions with relevant scaling fields. Y(q)=1+ STt 264600 " 224131500
The constant multiplierd[ 0,0] andd[ 2,0] for Y andq do (A15)

not affect the solution trajectories=v(y), but the trajecto-
ries do depend od[ 1,0]. As an example, consider again the 5
casea=2 andc=0, where

_ 2 3
f(y,U):_Zy(1+y)2+U(3+4y) (A14) f(y,v)—(—132 30@°+20 16 °+ 848 9251y

- . . : +739 20@2%y—507 15¢%+ 1 413 309 y?
Essential in the numerical solution process are singular y v y

points and curves. In this casgy,v) is analytic everywhere, —105 984 2y2—2 009 289°— 553 968 y°
so the only singular points to the differential equatiGh&?2) 4 4 5
and(A13) correspond td (y,v) andv both zero. This hap- —2453824"-232128y" - 918 52§
pens at only two points, both on tgeaxis: (— 1,0) and(0,0). —105 984/%)/[105( — 420 + 2415/+ 1920y

The former point turns out not to be relevant since the physi-
cal trajectoriegthose that satisfy thermodynamic stability at + 13642+ 192y%)]. (A16)
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This particularf(y,v) is more complicated than the one in to have the curve of singularities crossed by a curve of zero
Eq. (A14) by virtue of a denominator that is zero along a numerator off (y,v), resulting in a cancellation of singulari-
curve in (y,v) space. This curve of singularities, shown in ties. However, there are no such crossings, other than at the
Fig. 4, results in a new class of singular solutions. Figure 4rigin, and one point on the negatiyeaxis. The latter is not
also shows a family of solution trajectories with several val-physically relevant. Again, any physical significance of these
ues ofd[1,0] (we require|d[1,0]|< y210/19, by thermody- critical exponents by themselves is unclear. Complete solu-
namic stability. The solution trajectories eventually all en- tions for the boundary function¥(0z) for the exponent
counter the curve of singularities where the third derivativevalues @,b)=(2,3) and (3, &) are given in Ref[5] and

of Y diverges. One way to avoid this nonanalyticity would bewill not be restated here.
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