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Riemannian geometric approach to critical points: General theory

George Ruppeiner
Division of Natural Sciences, New College of the University of South Florida, Sarasota, Florida 34243

~Received 17 November 1997!

The postulate thatthe thermodynamic Riemannian curvature scalar is inversely proportional to the free
energyis generalized to cases with more than two independent thermodynamic variables. In the appropriate
thermodynamic coordinates, the resulting partial differential equation has as a solution a free energy in the
form of a generalized homogeneous function. In addition, linear transformations of the variables leave the
functional form of the solution unchanged. These findings are consistent with expectations from scaling and
universality. Analyzed in some detail are ‘‘corrections to scaling,’’ where one ‘‘irrelevant’’ variable is added
to a ‘‘relevant’’ ordering field and the temperature. The ratio of the corrections to scaling amplitudes is
computed for the heat capacity and the susceptibility along the critical isochore. Two solution branches result,
in the form of exact equations in terms of the critical exponents. The first solution branch is in good agreement
with other calculations of this universal ratio. With three variables, our scaled equation of state is not deter-
mined uniquely in terms of just a single set of critical exponents. How this relates to the modern theory of
critical phenomena is discussed.@S1063-651X~98!10505-6#

PACS number~s!: 05.70.2a, 02.40.2k, 05.40.1j, 64.10.1h
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INTRODUCTION

Purely thermodynamic theories of critical points da
back to van der Waals@1#, whose celebrated equation of sta
yielded a liquid-gas phase transition and critical point. La
dau @2# generalized this approach in the form of classical
mean-field theories, which are based on the assumption
the free energy is analytic at the critical point.

Despite the effectiveness of mean-field theories, they
not agree with experiment, differing, for example, in the v
ues of the critical exponents. Widom@3# suggested that the
basic structure of mean-field theory be extended by mean
nonclassical critical exponents and the assumption that
free energy is a generalized homogeneous function of
arguments. This scaling hypothesis and the further assu
tion of universality form the foundations of the mode
theory of the critical point@4#. This structure is supported b
statistical-mechanical models and renormalization-gro
theory.

Phase transitions and critical phenomena may also be
proached thermodynamically by Riemannian geometry, w
a metric related to thermodynamic fluctuations@5–7#. For the
case of two independent thermodynamic variables, it h
been postulated thatthe Riemannian curvature scalar is pro
portional to the inverse of the free energy. Since this curva-
ture may be written in terms of the third and lower deriv
tives of the free energy, this postulate leads to a third-or
partial differential equation~PDE! for the free energy. A
generalized homogeneous function of its arguments is a
lution and specifying the values of the critical expone
results in a full scaled equation of state.

In this paper I generalize the curvature postulate to ca
with more thermodynamic variables, corresponding to R
mannian geometries with dimension larger than 2. It is de
onstrated that, with the proper variables, a solution for
free energy in arbitrary dimension is a generalized homo
neous function, consistent with expectations from the m
ern theory of critical phenomena. It is also demonstrated
571063-651X/98/57~5!/5135~11!/$15.00
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linear transformations of these variables leave the functio
form of the solution unchanged.

In addition, I examine in some detail a problem involvin
three-dimensional Riemannian geometries, in which we h
a temperature and two ordering fields, one ‘‘relevant’’ a
the other ‘‘irrelevant’’ @4#. The latter leads to corrections t
the usual asymptotic critical properties. Using series exp
sions in powers of small fields, I compute the corrections
the scaling amplitude ratio of the heat capacity to the susc
tibility. Two solution branches result, each an exact form
in terms of the critical exponents. One of the two soluti
branches yields numbers in good agreement with known
sults. Discussion is also given of the lack of uniqueness
our resulting scaled equation of state and how this relate
the modern theory of critical phenomena.

I. INTRODUCTION TO THE RIEMANNIAN GEOMETRY
OF THERMODYNAMICS

For the Riemannian geometry of thermodynamics, I u
the notation of Ref.@7#, based roughly on that of Callen@8#.
The initial discussion is pitched in terms of fluid mixture
but the formalism is readily generalized to include magne
systems, a language I turn to in Sec. IV.

For a general, open,r -component fluid mixture system
with fixed volumeV, denote by

X5~U,N1,N2,...,Nr ! ~1!

the standard extensive quantities in the entropy represe
tion. HereU is the internal energy andN1,N2,...,Nr are the
mole numbers of the chemical species. The volumeV is
omitted from the parameter list since its value does not fl
tuate. It, rather than one of the mole numbers, is picked
the fixed system scale because we are interested in intr
properties of fluids and certainly do not wish to impose a
ficial boundaries to impede the flow of the constituents. T
volume is the only choice of system scale involving no a
5135 © 1998 The American Physical Society
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TABLE I. Notation for important quantities.

Notation Meaning

F5(1/T,2m1/T,...,2m r /T) intensive parameters in the entropy representat
R Riemannian curvature scalar
T temperature
TC critical temperature
Y scaled equation of state
a standard densities in the entropy representation
a,b,c critical exponents
d@ i , j # free-energy series coefficients
gab metric elements
h relevant ordering field
kB Boltzmann’s constant
m order parameter
n5r 11 thermodynamic dimension
o irrelevant ordering field
p pressure
q5o/utuc irrelevant scaling variable
r number of fluid components
s entropy per volume
t512TC /T reduced temperature
z5h/utub relevant scaling variable
k dimensionless universal constant
m i chemical potential of thei th species
f(F)5s2(m50

r Fmam (5p/T) free energy
y
s

e

e
bl
e
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r

th
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re-
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m 0
ce
ficial internal boundaries. The dimension of the thermod
namic state space isn5r 11. Frequently used notation i
given in Table I.

Denote by then-tuple

a5
X

V
~2!

the extensive quantities per volume and by

F5S 1

T
,2

m1

T
,2

m2

T
,...,2

m r

T D ~3!

the conjugate intensive quantities, whereT is the temperature
andm1,m2,...,m r are the chemical potentials of ther chemi-
cal species. The free energy per volume appropriate to thF
coordinates is denoted by

f~F !5s2 (
m50

r

FmamS 5
p

TD , ~4!

where s is the entropy per volume and the superscriptm
~which ranges from 0 tor ! denotes which variable in th
parameter list. I add that the choice of independent varia
F, together with the choice ofp/T as the dependent fre
energy, is routinely made in the analysis of near-criti
point fluid data@9#.

Set now the context of the fluctuation theory. Conside
finite, open subsystemAV of an infinite systemAV0

in ther-

modynamic equilibrium. The subsystemAV has fixed vol-
umeV, but the rest of its thermodynamic parametersF fluc-
tuate as particles and energy flow randomly across
-

es

l

a

e

boundary. The largeAV0
has volumeV0 ~tending to infinity!

and fixed thermodynamic stateF0 . According to the classic
thermodynamic fluctuation theory@2#, the probability of
finding F in a small differential elementdF0dF1

¯dFr is ~in
the Gaussian approximation!

PV~FuF0!dF0dF1
¯dFr

5S V

2p D n/2

expH 2
V

2 (
m,n50

r

gmnDFmDFnJ
3AgdF0dF1

¯dFr , ~5!

whereDFa5Fa2F0
a , the ‘‘metric elements’’

gab5
1

kB

]2f

]Fa]Fb , ~6!

g5det~gab!, ~7!

and kB is Boltzmann’s constant. The metric elements a
evaluated in the state of maximum entropy, which cor
sponds toF5F0 .

The quadratic form

~D l !25gmnDFmDFn ~8!

constitutes a positive-definite Riemannian thermodyna
metric on then-dimensional thermodynamic state space@7#.
Here and henceforth summation over repeated indices fro
to r is understood. Physically, the interpretation for distan
between two thermodynamic states is clear from Eq.~5!: The
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larger the distance between two thermodynamic states,
less the probability of a fluctuation between them.

This basic geometry has also seen other applicatio
Weinhold originally used an inner product based on sec
derivatives of the energy to simplify certain thermodynam
computations@10#. Andresen, Salamon, and Berry@11# have
used this geometry in the context of finite-time thermod
namics, where the line element represents the entropy d
pated during an irreversible process.

I add that to go from a fluid system to a magnetic o
generally requires only that we replace chemical potent
with magnetic fields and densities by magnetizations. A d
cussion of this analogy is given by Kittel@12# in a general
context and by Fisher@13# in the context of the critical point

II. RIEMANNIAN GEOMETRIC THEORY
OF THE CRITICAL POINT

Of primary interest is the fourth-rank thermodynamic R
mannian curvature tensor, which follows from the metric

Ra
bgd5Ga

bg,d2Ga
bd,g1Gm

bgGa
md2Gm

bdGa
mg , ~9!

where the Christoffel symbols

Ga
bg5 1

2 gma~gmb,g1gmg,b2gbg,m! ~10!

and gab denotes the inverse of the metric tensorgab . The
comma notation ,a in the subscript indicates differentiatio
with respect to the thermodynamic coordinateFa. Associ-
ated with the Riemannian curvature are the Ricci curvatu

Rab5Rm
amb ~11!

and the Riemannian curvature scalar

R5gmnRmn . ~12!

I follow the curvature sign convention of Weinberg@14#. I
note that with our metric,R will have units of volume, in all
dimensions.

For two thermodynamic variables the basic postulate
this geometry of thermodynamics is the geometric equa
@5–7#

R52k
kB

f
, ~13!

wherek is a universal dimensionless constant of order un
The word ‘‘universal’’ is used in the sense of the mode
theory of critical phenomena, which I take here to me
depends only on the critical exponents, which get introdu
in the solution process@15#. The free energy per volumef
includes just the singular part, that associated with criti
point fluctuations. It goes to zero at the critical point where
becomes infinitely easy to produce fluctuations. Picking t
singular part out in the solution process is generally straig
forward.

The original argument for this postulate consisted of d
components. First is the finding thatR is a measure of the
effective intermolecular interaction strength, specifically,
correlation volumejd. For example,R is zero in the ideal
gas and diverges asjd near the critical point@16#. Second is
he
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the statement of hyperscaling@17# that the inverse of the free
energy is proportional tojd. Combining these component
leads immediately to Eq.~13!.

The extent to which these two parts of the argument g
eralize to higher thermodynamic dimensions is,a priori, not
clear. Notice, for example, that in two dimensions there
only one independent component of the Riemann tensor
all information basically resides in the scalarR @14#. This
makes it easy to pick it out as the essential part of the R
mann curvature. However, such is not the case in hig
dimensions and a fundamentally different approach is ca
for to arrive at a physical law. I will bypass the dual arg
ments above entirely.

For guidance, I set down three principles a correct the
should obey: ~i! It should be covariant,~ii ! it should con-
tain in some natural way the known theory in two dime
sions, and~iii ! any constant appearing in the theory shou
be universal, admitting a multiplicity of solutions.

Let us discuss these principles, starting with covarian
By covariance, I mean that once the theory has been for
lated, the results computed with it do not depend on
coordinate system picked to calculate in. For example
given thermodynamic state has specific values of its phys
parameters, such as pressure, entropy, or internal energy
gardless of the coordinates we use. The rules of Rieman
geometry are designed specifically to force the proper tra
formation of physical quantities under a change of coor
nates. For example, Eq.~12! for R will transform as a scalar

The geometric equation~13! in two dimensions is not
written in a way that manifests covariance sincef on the
right-hand side of the equation is the natural free ene
specific to the set of coordinatesF. This is partly due to our
early, and necessary, singling out of the volume as a spe
coordinate. However, when a free energy is picked, it ine
tably comes with a natural set of thermodynamic coor
nates. The reason for pickingf(F) was discussed in som
detail in Ref.@7#. Although the arguments are not very rig
orous, they are a productive way to move us forward.
have the right-hand side of the equation consistent with
left, we are obliged to transformf as a scalar.

Having stressed covariance, let me say that it certa
does not prevent us from finding special coordinates wh
things are in one way or another simplified. TheF coordi-
nates allow us to write the metric as the second derivative
f(F). This allows proof of some special theorems, as
will see.

The second guiding principle, that the theory should
duce in some natural way to the known theory in two dime
sions, is a call for simplicity. The statement of a success
theory should transcend dimensionality. It should not be n
essary to reinvent it every time a thermodynamic variable
added.

The third principle, calling for universal constants, repr
sents a desire for a class of solutions for every value of
constants. It is motivated by universality in the mode
theory of critical phenomena, where, for example, many fl
systems reside in the same universality class. This princ
rules out all theories where the constants are not dimens
less. This is because neither statistical mechanics nor
theory of critical points has universal constants with un
other thankB .
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5138 57GEORGE RUPPEINER
Clearly, the simple equation~13! satisfies all three of ou
principles. I will adopt it in generality, after examining a fe
unsatisfactory possibilities. Among proposed theories tha
not work consider

R252k
kB

f
, ~14!

RmnRmn52k
kB

f
, ~15!

and

Rmnf ,mn52kkB . ~16!

Each violates the second principle, in failing to reduce na
rally to the known two-dimensional case. The first two a
fail to satisfy the third principle since their constantk’s have
units of volume raised to some power and such const
cannot be universal. The third proposed theory is not co
riant since the second derivatives of scalar functions do
transform as tensors. This problem could, however, be fi
by taking the covariant derivative off, but this does not
solve the inconsistency with the second principle.

Consider also a proposed theory of the form

gmnGj
mnf,j5k, ~17!

which has a left-hand side not manifestly covariant since
Christoffel symbols do not transform as the components
tensor@14#. Indeed, it is not possible to form a tensor fro
quantities formed from first derivatives of the metric, hen
the emphasis on curvature. One might argue for a theory
Eq. ~17! by saying that this form is intended to hold only
some specific coordinate system and then demand that
sides of the equation transform as a scalar. However,
though such arguments are plausible for the free energy,
become increasingly unlikely for derivatives of this quanti
The adopted equation~13! seems to be the simplest postula
and the best.

III. GENERALIZED HOMOGENEOUS FUNCTION
SOLUTIONS

We may readily work out an expression forR valid in
arbitrary dimensionn. By Eq. ~12!,

R5 1
4 gmngjogpr~gmn,jgop,r2gmo,rgnj,p!. ~18!

The metric identity

gab
,g52gamgbngmn,g ~19!

was useful in this calculation. The second derivatives of
metric elements~fourth derivatives off! cancel. I emphasize
that this form of the curvature scalar obtains only with th
special form of the metric given in Eq.~6! and is not coor-
dinate invariant.

We may rewrite Eq.~18! as

R5
1

4g3 GmnGjoGpr~gmn,jgop,r2gmo,rgnj,p!, ~20!
o

-

ts
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d
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whereGab is the cofactor ofgab , in terms of which@18#

gab5
Gab

g
. ~21!

This expression demonstrates some points that prove im
tant. Consider some specific index valuea. From the prop-
erties of the determinantsg andGab, one may see that eac
term in the numerator and the denominator of Eq.~20! con-
tains exactly six derivatives off with respect toFa @19#. In
addition, each term in the numerator has 3n21 factors off
and each term in the denominator has 3n factors off.

These observations allow us to prove two theorems
central importance. Define first the variablesz1,...,zr by

zi5
Fi

uF0uf i
, ~22!

wheref1 ,...,f r are arbitrary, constant ‘‘critical exponents.
Also definef0 to be a constant critical exponent. We ha
the following.

Theorem 1.The functional form

f~F !5uF0uf0Y~z1,z2,...,zr ! ~23!

satisfies the geometric equation in the sense that the su
tution of this form reduces the geometric equation to a par
differential equation for the functionY in terms of the re-
duced list of variablesz1,...,zr .

The proof of this theorem is straightforward and resu
since all factors ofF0 will cancel out on substituting this
form into the geometric equation, as a consequence of
properties noted above of the determinants. Also correc
the following.

Theorem 2.If the function f(F)5uF0uf0Y(z1,z2,...,zr)
satisfies the geometric equation, then so does the functio

f~F !5ul0F0uf0Y~l1z1,l2z2,...,l rz
r ! ~24!

for all values of the constantsl0 ,l1 ,...,l r .
The proof again follows from the properties of the dete

minants in Eq.~20!. We may multiply eachFa in the geo-
metric equation by a corresponding factor ofla without
changing the form of the equation. That the form of t
geometric equation is unchanged by the transformationFa

→laFa ~no summation intended! establishes the theorem
Both these theorems were proved previously in two dim
sions@5#. Here we see that they hold more generally.

Theorem 1 embodies the concept of scaling in the the
of critical phenomena. It leads to the usual equalities am
critical exponents, as well as various ways of plotting expe
mental data for a given fluid so that they fall on the sa
curve. Theorem 2 embodies the concept of the universa
of the functionY. For each functionY, there is a class of
different fluids with members differentiated by values of t
multiplicative constantsla . Scaling is then a statemen
about thefunctionf(F), whereas universality is a stateme
about what is allowed by themachinerythat gives usf(F),
in this case a PDE.

I will confine our study to functions of this form. Whethe
or not they are unique solutions to the geometric equatio
unresolved mathematically, but in the absence of proof to



be
er
o
e
ul
n

ar

ic
ns

n

th
s
t-
y

-

1

e
ta

en
e
a
e
he

th
is
r

ng
ic

a
tu

c.

nt

by
al

c-

-

-
e
e

the

i-
-

,
the

ne of

57 5139RIEMANNIAN GEOMETRIC APPROACH TO CRITICAL . . .
contrary, the possibility of other solutions must certainly
admitted. It might then be thought that scaling and univ
sality have merely been built into the theory, but this is n
the case. They are allowed by the special form of the g
metric equation and this constitutes a strong positive res

Let us prove another theorem of general validity. Co
sider a linear transformation of the standard intensive v
ables

F8a5ca1 (
m50

r

cm
aFm, ~25!

where thec’s are all constants. We may write the metr
elements in theF8 coordinates using the general tensor tra
formation rule@14#

gab8 5
]Fm

]F8a

]Fn

]F8b gmn . ~26!

Since the partial derivatives of the coordinates are consta
this leads, with Eq.~6! for gab , immediately to

gab8 5
1

kB

]2f

]F8a]F8b . ~27!

We see that the form of the metric elements is exactly
same inF8 coordinates as inF coordinates. Hence the form
of the curvature scalarR and the partial differential geome
ric equation are exactly the same in the two coordinate s
tems. This implies the following.

Theorem 3.If f(F0,F1,...,Fr) is a solution to the geo
metric equation, thenf(F80,F81,...,F8r) will also be a so-
lution, with the same functionf. Furthermore, Theorems
and 2 hold as well with the new variables.

This mixing of variables was suggested by Rehr and M
min @20#. It is used routinely in the analysis of fluid da
@21#.

I mention on the side that one implicit, though not ess
tial, idea in this approach is thatR should in some sense b
the correlation volume. This certainly appears to be the c
in two dimensions, but, to my knowledge, the only report
test of this possibility beyond two dimensions was by t
present author and Davis@22#. We worked outR for the ideal
gas in arbitrary dimension and found that it is small, on
order of the intermolecular distance. This is certainly cons
tent with what is expected with a correlation volume inte
pretation.

IV. SOLUTION IN THREE DIMENSIONS
AND CORRECTIONS TO SCALING

Turn now to a physical application, corrections to scali
contributed by an extra independent variable near the crit
point. Let us set the context with Fisher’s review@4#, using
the language of magnetic systems. The free energy is
lowed to depend on three variables, the reduced tempera
t, defined below, a magnetic ordering fieldh conjugate to the
order parameter, and a thermodynamic fieldo coupling only
weakly to the critical properties. The fieldsh and o are re-
garded as proportional toF1 andF2 or to some linear com-
bination of these fields, as in Eq.~25!, so the metric has the
-
t
o-
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-

ts,

e

s-
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se
d

e
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-
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form given in Eq.~27!. As we will see, the variablet is also
linearly related to theFa’s. Therefore, the theorems of Se
III all apply in the coordinate system (t,h,o).

We may write

f~ t,h,o!5utuaY~z,q!, ~28!

where

z5
h

utub , ~29!

q5
o

utuc
, ~30!

anda, b, andc will denote in this section our three consta
critical exponents@23#. I take a.1, b.0, and c,0. The
case withc.0, whereo is also ‘‘relevant,’’ is beyond the
scope of this paper. The reduced temperaturet is defined as

t512
TC

T
, ~31!

with TC being the critical temperature. As emphasized
Fisher @4#, this definition agrees with the more tradition
definition (T2TC)/TC up to analytic corrections of ordert2.
Note, by Theorem 3, that we could haveTC /T depend lin-
early onh ando if we desired. This accommodates a stru
ture whereTC varies with the ordering fields.

Clearly, ast→0, the effect of a changingh on the func-
tion Y grows, while that of a changingo diminishes to in-
significance. Hence we callh relevant to the asymptotic
critical properties ando irrelevant. Define the order param
eter associated withh as

m5f ,h . ~32!

In the Ising or the Curie-Weiss model,m is the magnetiza-
tion per spin. We take the functionY to be an even function
of h and z. For o→0 and typical values of the critical ex
ponentsa andb, we get the familiar critical properties; se
Fig. 1. Of interest in corrections to scaling is how th
asymptotic behavior gets modified as we go away from
critical point.

Much studied in the theory of the critical point are un
versal ratios of critical amplitudes. Let me work out an im

FIG. 1. Schematic of (t,m) space. It shows the critical point
which corresponds to the point of highest temperature at which
system shows zero magnetizationm in the zero ordering fieldh. At
lesser temperatures the system spontaneously magnetizes in o
two directions along the coexistence curve (h50).
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5140 57GEORGE RUPPEINER
portant one in corrections to scaling. A series for the f
energy for smallq andz may be written as

f5ta(
i 50

`

(
j 50

D j 52

`

d@ i , j #qizj . ~33!

From here on out, I taket.0 and have no more need for th
absolute value sign ont. The first few terms in the series ar

f5d@0,0#ta1d@0,2#ta22bh21d@1,0#ta1ucuo

1d@1,2#ta22b1ucuoh21¯ . ~34!

For h50, the heat capacity is corrected to leading order

f ,tt5a~a21!d@0,0#ta22~11acotucu1¯ !, ~35!

with the correction amplitude

ac5
~a1ucu!~a1ucu21!d@1,0#

a~a21!d@0,0#
. ~36!

The susceptibility is

f ,hh52d@0,2#ta22b~11axotucu1¯ !, ~37!

with

ax5
d@1,2#

d@0,2#
. ~38!

The ratio

ac

ax
5

~a1ucu!~a1ucu21!d@1,0#d@0,2#

a~a21!d@0,0#d@1,2#
~39!

is expected to be universal@24#.
Let us now return to the geometric equation. Partial d

ferential equations generally have a multiplicity of solutio
depending on boundary conditions and assumptions a
regularity. The PDE appearing here has, to my knowled
not been investigated beyond two dimensions@25# and its
general properties are not known. The search for a solu
must then rest at this point on some plausible limiting
sumptions:~i! The free energy is a generalized homogene
function of its arguments;~ii ! the functionY(q,z) is regular
at q5z50; ~iii ! the two ‘‘boundary’’ functionsY(0,z) and
Y(q,0) result from the solution of the geometric equation
two dimensions, with the first function symmetric inz
@Y(0,z)5Y(0,2z)#, but the second not symmetric inq; and
~iv! the solution satisfies thermodynamic stability atq5z
50.

The first assumption is the natural form of the solution,
I have discussed. The second assumption seems at le
plausible first try since in the modern theory of critical ph
nomena the free energy is expected to be regular exce
phase boundaries. The third assumption stipulates boun
conditions; that these assume neither too much nor too l
is, a priori, not clear. That these work will be revealed by t
solution process. I take our critical point to be even in t
magnetic fieldh, but not in the irrelevant scaling fieldo. As
we will see, alternatives to this last point are not mathem
cally attractive.
e

-

ut
e,

n
-
s

s
t a

-
at
ry

le

e

i-

The fourth assumption, of thermodynamic stability,
connected with the fact that the entropy is a maximum
equilibrium @2#. This implies that the quadratic form in Eq
~8! must be positive-definite. Necessary and sufficient con
tions for this are@26#

g00.0, ~40!

Ug00

g10

g01

g11
U.0, ~41!

and

Ug00

g10

g20

g01

g11

g21

g02

g12

g22

U.0. ~42!

Since the geometric equation is symmetric inh, a sym-
metric boundary conditionY(0,z) must result in a full solu-
tion symmetric inz. The series~33! then applies and ther
modynamic stability in (t,h,o) coordinates requires

d@0,0#,d@0,2#,d@2,0#.0 ~43!

and

2a~a21!d@0,0#d@2,0#.~a2c!2d@1,0#2. ~44!

Turn now to the solution of the geometric equation w
two variables, which is covered in some detail in the Appe
dix. It is found that we can pick the four coefficientsd@0,0#,
d@1,0#, d@2,0#, and d@0,2# arbitrarily subject only to ther-
modynamic stability. The geometric equation in two dime
sions will then determine all of the other boundary coe
cientsd@ i ,0# andd@0,j # uniquely. I interpretd@0,0#, d@2,0#,
andd@0,2# as scaling constants andd@1,0# as an asymmetry
constant.

Return now to the solution of the full three-dimension
Riemannian geometry. I first calculate the thermodynam
Riemannian curvature scalar with Eq.~20!. We have

R5
f ,thf ,thf ,ttf ,hoof ,hoo2f ,hhf ,ttf ,ttf ,hoof ,hoo1¯

2@2f ,tof ,tof ,hh12f ,hof ,tof ,th1¯#2 ,

~45!

where a factor ofg has canceled in the numerator and d
nominator. This expression is too large to show in total
because there are 122 terms in the numerator and 5 term
the square brackets in the denominator. Clearly, a comp
program for doing symbolic mathematics is highly desirab
if not essential, for doing such lengthy calculations@27#.

To compute the constantk, I use a basic methodolog
similar to that in two dimensions described in the Append
Calculate a series forRf to zeroth order inz and q. Then
exploit the postulated independence ofk on the series coef-
ficientsd@ i , j #. The six coefficients that appear in the zerot
order series forRf are d@0,0#, d@1,0#, d@2,0#, d@0,2#,
d@3,0#, andd@1,2#. The first four coefficients may be freel
set, d@3,0# follows from the method of the Appendix, an
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d@1,2# follows from the method laid out below. If we were t
set d@1,0# to zero, then both boundary functions would
even in their arguments. Since the geometric equation is
even function of both its arguments, its solution would th
likewise be an even function andd@1,2# would be zero. In
the limits d@1,0#→0 andd@1,2#→0, a somewhat laboriou
computation yields the universal expression
i
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k5
4a24b24c24bc2a214b214c2

2~a21!a
, ~46!

regardless of the values of the remaining coefficients.
Let us illustrate this solution process with the mean-fie

theory exponentsa52, b5 3
2 , andc50. Substituting the se-

ries ~33! into the expression for the curvature~45! yields
Rf5~4d@0,0#d@0,2#d@1,0#3d@1,2#1d@0,0#2d@1,0#2d@1,2#21d@0,0#d@0,2#2d@1,0#2d@2,0#

27d@0,0#2d@0,2#d@1,0#d@1,2#d@2,0#2d@0,0#3d@1,2#2d@2,0#27d@0,0#2d@0,2#2d@2,0#2

16d@0,0#2d@0,2#2d@1,0#d@3,0#13d@0,0#3d@0,2#d@1,2#d@3,0# !/$4d@0,2#2

3~2d@1,0#21d@0,0#d@2,0# !2%1O~z,q!. ~47!
wn
h
ge

on

s,

for

.
ic

re-
ure
reas-
In the limitsd@1,0#→0 andd@1,2#→0, we getk5 7
4 , regard-

less of the values of the other coefficients. This value
consistent with Eq.~46!. Having determinedk, we may now
set d@0,0#, d@1,0#, d@2,0#, and d@0,2# as we like, use the
method of the Appendix to findd@3,0#, and all of the other
boundary coefficients, and solve the zeroth-order term in
~47! (52k) for d@1,2#.

Clearly the value ofd@1,2# will not be unique since it
follows from the solution to a quadratic equation. I offer n
method in this paper to decide which of these two roots
d@1,2# is physically appropriate other than comparisons w
what is known from other calculations. We may show th
generally

d@1,2#5~universal constant!6

d@1,0#d@0,2#

d@0,0#
, ~48!

with the universal constant having two solution branch
denoted by the6 sign. The roots to the quadratic equatio
are real for all values of the critical exponents. Substitut
into Eq. ~39! then yields two solution branches for the co
rections to scaling amplitude ratio:

ac

ax
5

a1ucu21

21a22b12ucu
~49a!

5
a1ucu21

a22b
. ~49b!

These ratios are entirely independent of the series co
cientsd@ i , j #. They are hence universal.

We now turn to comparisons with results from the mo
ern theory of critical phenomena. Here it is believed that
order parameter and spatial dimensionalities determine a
the critical properties@4#. The three variable solution to th
geometric equation in this section is restricted to an or
parameter dimensionality of unity; the order parameterm is a
scalar. However, the spatial dimensionality is allowed
vary and enters the theory through the values of the crit
exponents.

Aharony and Ahlers@28# have worked out expressions fo
the corrections to scaling amplitudes and for the critical
s

q.

r

,

,

g

fi-

-
e
of

r

al

-

ponents. For the mean-field theory exponents~four spatial
dimensions! a52, b5 3

2 , and c50, they obtainedac /ax

511. Equations~49a! and~49b! yield ac /ax511 and21,
respectively. The first value is in agreement with the kno
value. For this reason, I will pick the first solution branc
@Eq. ~49a!# as the true physical one. Written in the langua
of Fisher@4# ~see also Ref.@23#! it reads

ac

ax
5

12a1u

42a22D12u
. ~50!

I offer no physical interpretation for the second soluti
branch.

Let us turn to the three-dimensional~3D! Ising model
exponents, which have values neara5 15

8 andb5 25
16 @29#. The

corrections to scaling exponent has value nearc52 1
2 and

the knownac /ax50.960.1 @30#. For these exponent value
Eq. ~49a! yields ac /ax5 11

14 50.79, in agreement with the
known value.

Once we have picked one of the two values ford@1,2#,
the rest of the series coefficientsd@ i , j # follow uniquely from
this algorithm.

1. i 51.
2. Begin the outer loop. Write the series forY(q,z) to

ordersqi 13 andzi 13.
3. With this series, compute the series forRf to ordersqi

andzi .
4. j 50.
5. Begin the inner loop. From the series forRf, pick the

coefficient of the termqi 2 j zj .
6. Set this coefficient to zero and solve algebraically

the coefficientd@ i 2 j 11,j 12#.
7. j 5 j 12.
8. Repeat the inner loop at step 5 untilj exceedsi .
9. i 5 i 11.
10. Repeat the outer loop at step 2 as long as desired
This algorithm is very direct and simple. The algebra

equation in step 6 has the coefficientd@ i 2 j 11,j 12# ex-
pressed linearly in terms of coefficients that have been p
viously determined in the solution process. The proced
may be repeated as long as desired, but it becomes inc
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ingly time consuming asi increases due to the difficulty o
computing the series in step 3. My limit in this research w
i 57.

Figure 2 shows the scaled free energyY(q,z) for the
mean-field theory exponents with initial series coefficie
d@0,0#5d@0,2#5d@2,0#51 andd@1,0#5 1

2 . Of the two so-
lution branches ford@1,2# I picked the one in Eq.~49a!. The
boundary functionY(0,z) is analytic in the whole range
z56` @5#. The solution curve for the boundary functio
Y(q,0) is shown in Fig. 3. It has infinities in the first an
second derivatives ofY nearq50.76 and21.46. In Fig. 2, I
have held well back from these limiting values. The fu
functionY(q,z) is well behaved on the displayed square a
satisfies thermodynamic stability. For fixedq, it is a mini-
mum for z50. For fixedz, f increases monotonically with
q. I also computedY(q,z) on this square for the other roo

FIG. 2. Graph ofY(q,z) as a function ofq andz for the mean-
field theory exponents,d@0,0#5d@0,2#5d@2,0#51 and d@1,0#
5

1
2 , and with the principle physical root ford@1,2# corresponding

to Eq. ~49a!. The function is smoothly behaved on the squa
shown. Thermodynamic stability is also satisfied.

FIG. 3. Family of solution trajectories in (y,v) space with
d@0,0#5d@2,0#51 and various values ofd@1,0# for the critical ex-
ponentsa52 andc50. The limit of thermodynamic stability cor
responds toud@1,0#u51. Trajectories start from the origin (q50)
and move into the first quadrant forq.0 and into the third quadran
for q,0. All the physical trajectories eventually head for (y,v)
→(`,`) in the first quadrant, but withuqu remaining finite.
s

s

d

for d@1,2#, corresponding to Eq.~49b!, and found no essen
tial qualitative difference that would lead me to prefer o
root or another.

The functionY(q,z) found here is not universal in th
sense in this paper of depending only on a single se
critical exponents and three scaling constants. This is
cause, in addition to the scaling constantsd@0,0#, d@0,2#,
and d@2,0#, Y(q,z) depends on the asymmetry parame
d@1,0#. In the light of the modern theory of critical phenom
ena, this additional dependence is perhaps not surprising
me quote from Privman, Hohenberg, and Aharony@24#:
‘‘Critical exponents emerge from the ‘local’ properties of th
@renormalization-group# flow in the immediate vicinity of
each fixed point, and they can be calculated from the line
ized recursion relations. On the other hand, the scaling fu
tions are properties of the complete ‘global’~nonlinear!
@renormalization-group# flow away from the fixed point un-
der consideration, along ‘relevant’ trajectories in the para
eter space~leading to other fixed points or to infinity!....’’
This entire issue is clearly deserving of further study, but t
is beyond the scope of this paper.

Having explored one type of solution to the geomet
equation in three dimensions, I now turn to some less fav
able possibilities. Specifically, the following two questio
are addressed. First, one of the boundary functions, but
the other, has been picked to be symmetric in its varia
However, may they both be symmetric, or neither? Seco
the boundary functions have been determined by solving
geometric equation in two dimensions. Is doing so ma
ematically necessary, or could we pick all of the bounda
coefficients freely?

Consider the possibility of boundary conditions that a
symmetric inboth q andz. I tried this for the pair of expo-
nent sets discussed above, using the method of the Appe
to solve for the boundary coefficients, withd@1,0#50. For
both exponent sets, the series solution method leads to e
inconsistent algebraic equations or complex roots. Hence
least for these exponent sets, I reject the completely symm
ric solution as inconsistent with the geometric equation.

The case with neither boundary solution even in its ar
ment~i.e., d@0,1#Þ0! results in considerable algebraic com
plication. It also lacks interest because there seems to b
good physical interpretation for either boundary solution
this case. Hence I do not consider it further here.

Let us now turn to the issue of the freedom available
choosing the boundary coefficients. First, if we choo
d@3,0# freely, rather than with the method of the Append
then Eq.~48! would not obtain and the corrections to scalin
amplitude ratio in Eq.~49! would not be universal. This issu
aside, I tried an entirely free set of boundary coefficients
the pair of exponents values (a,b,c) discussed above. On
of the boundary coefficient sets corresponds to a symme
function and the other does not. No mathematical incon
tencies were encountered in the solution process. Howe
despite being mathematically viable, free boundary con
tions are not physically very interesting because universa
in no sense obtains.

CONCLUSION

In conclusion, I have extended the basic postulate that
thermodynamic Riemannian curvature scalar is proportio
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to the inverse of the free energy to an arbitrary number
dimensions. The resulting partial differential equation has
a solution a generalized homogeneous function, in all dim
sions. Such a form is expected from the modern theory
critical phenomena and it embodies scaling and universa
A linear mixing of the standard intensive variables in t
entropy representation, in conjunction with a given fun
tional form of the free energy, is also allowed as a solution
all dimensions. Such a mixing of variables is routinely us
in the modern theory of critical phenomena. In addition
have worked out the ratio of the corrections to scaling a
plitude for the heat capacity and the susceptibility on
critical isochore. Two solution branches result in the form
exact equations in terms of the critical exponents. One of
solution branches is in good agreement with what was p
viously known.

Left unresolved are questions centering around
uniqueness of the solution. The series coefficientd@1,0# in
three dimensions is not a scaling constant, so the absen
some preferred value for it means that our equation of sta
not yet universal.~Note that this does not affect calculate
values of the ratioac /ax!. An additional ambiguity consists
of the two solution branches for the series coefficientd@1,2#.
Generally, a lack of uniqueness is not unexpected in the c
text of the modern theory of critical phenomena since
scaled equation of state could depend on more than a s
critical fixed point. To make further progress on this proble
probably requires a full solution scheme for the partial d
ferential equation, one that goes beyond the relatively limi
series here. In any case, additional ideas are called for.
spite unresolved issues, I feel that the results presented
represent a clear and significant advance towards compu
equations of state from thermodynamics with the Riema
ian geometric method.

APPENDIX: SOLUTIONS IN TWO DIMENSIONS

This appendix discusses solutions to the two-dimensio
geometric equation, essential because such solutions co
tute the boundary conditions for the three-dimensional pr
lem. Such solutions have been discussed previously@5,6#, so
only a brief review is provided. Emphasis is on solutions n
symmetric about the zero ordering field since these h
been less discussed. Hence the focus is on the variableo, its
critical exponentc, and the functionY(q)5Y(0,q).

The geometric equation in two dimensions may be writ
@7#

U f ,tt

f ,ttt

f ,tto

f ,to

f ,tto

f ,too

f ,oo

f ,too

f ,ooo

U
2Uf ,tt

f ,to

f ,to

f ,oo
U2 52

k

f
. ~A1!

Substitution of a scaling form

f5utuaY~q!, ~A2!

where

q5outu2c, ~A3!
f
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reduces this PDE to an ordinary third-order differential eq
tion for Y(q) by Theorem 1.

Of primary interest are series solutions

Y~q!5(
i 50

`

d@ i ,0#qi . ~A4!

The first three coefficientsd@0,0#, d@1,0#, andd@2,0# may
be set freely, subject only to thermodynamic stability@Eqs.
~43! and ~44!#. Before the remaining coefficients can b
solved for, we must evaluate the constantk in Eq. ~A1!. By
our basic principle for a correct theory, its value depen
only on the critical exponentsa andc and in no way on the
series coefficientsd@ i ,0#. In particular, this means thatk
should have whatever value it has in the limitd@1,0#→0,
where

k5
~c21!~2c2a!

a~a21!
, ~A5!

regardless of the values of the other coefficients. This exp
sion results as well from the requirement that the solution
regular atq50 for symmetric solutions produced by settin
d@1,0#50 @5,6#.

Let us illustrate witha52 andc50. The basic method
consists of computing a series forRf to successively highe
powers of q. By the geometric equation~A1!, only the
zeroth-order term differs from zero; this allows the uniq
determination of all of the coefficientsd@ i ,0# for i .3. Sub-
stituting a third-order series forf yields

Rf5d@0,0#~d@1,0#2d@2,0#24d@0,0#d@2,0#2

13d@0,0#d@1,0#d@3,0# !/4~d@1,0#22d@0,0#d@2,0# !2

1O~q!. ~A6!

In the limit d@1,0#→0, the first term on the right-hand sid
goes to21, no matter what the values of the other coef
cients, andk51, consistent with Eq.~A5!.

At this point, the first three coefficients may be set free
and d@3,0# follows on setting the zeroth-order term in E
~A6! to 2k. Successively higher-order series expansions
Rf now determine uniquely as many of the remaining co
ficients as desired. For the particular choicesd@0,0#
5d@2,0#51 andd@1,0#5 1

2 , the series is

Y~q!511
q

2
1q21q31

23q4

16
1

277q5

160

1
737q6

320
1

2623q7

896
1¯ . ~A7!

Consider some additional points about the first three
ries coefficients. By Theorem 2,Y andq may each be mul-
tiplied by constants and the result will remain a solution
the geometric equation. In Ref.@5# I took these scaling con
stants to bed@0,0# andd@2,0#. In this paper I take them both
to be 1, with no loss of generality@31#. The coefficient
d@1,0#, however, does not represent a scaling constant an
Ref. @6# it was found that it must be set to zero to reprodu
the usual critical point behavior. However, there appears
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be no reason to require this asymmetry coefficientd@1,0# to
be zero in connection with the boundary conditions. In fa
I show in Sec. IV that to get a mathematically consiste
solution to the geometric equation in three dimensions,
cannot setd@1,0# to zero. Other than this, and thermod
namic stability, I bring forth no restrictions ond@1,0#.

Not essential in our series solution method, but instruct
nonetheless, are full solutions to the geometric equation
two dimensions@5#. To do this, return to Eq.~A1! and make
the change of variables

x5 lnuqu, ~A8!

w5 ln~Y!, ~A9!

y5
dw

dx
5

q

Y
Y8, ~A10!

and

v5
d2w

dx2 5FqY8

Y
1

q2Y9

Y
2

q2~Y8!2

Y2 G . ~A11!

The third-order differential equation forY(q) now reduces to
a pair of coupled first-order differential equations

dv
dx

5 f ~y,v ! ~A12!

and

dy

dx
5v, ~A13!

where f (y,v) is a ratio of polynomials iny and v. The
solutions to these coupled equations are parametrized tr
tories in (y,v) space.

By our general assumptions, it is implicit thatq50 rep-
resents a point on the solution trajectory. The additional
sumptions of analyticity, thermodynamic stability, and t
transformation equations~A10! and ~A11! then imply that
q50 corresponds to theorigin in (y,v) space. The transfor
mation equations further imply that, regardless of the val
of the critical exponents, ifd@1,0#50 the solution trajectory
starts from the origin with slope 2 and ifd@1,0#Þ0 it starts
with slope 1. The discontinuity in the limitd@1,0#→0 was
discussed in Ref.@6# and was connected with the preferen
for symmetric solutions with relevant scaling fields.

The constant multipliersd@0,0# andd@2,0# for Y andq do
not affect the solution trajectoriesv5v(y), but the trajecto-
ries do depend ond@1,0#. As an example, consider again th
casea52 andc50, where

f ~y,v !522y~11y!21v~314y!. ~A14!

Essential in the numerical solution process are sing
points and curves. In this casef (y,v) is analytic everywhere
so the only singular points to the differential equations~A12!
and ~A13! correspond tof (y,v) andv both zero. This hap-
pens at only two points, both on they axis: (21,0) and~0,0!.
The former point turns out not to be relevant since the ph
cal trajectories~those that satisfy thermodynamic stability
t,
t
e

e
in

c-

s-

s

r

i-

the origin! starting at the origin do not go there. The latter
a singular point for all critical exponents and corresponds
the simple coordinate singularity atq50 in Eq. ~A8!. There
is no nonanalytic behavior in the thermodynamic propert
at the origin. The series~A7! is used to start the numerica
solution from the origin (q50).

Figure 3 shows a family of solution trajectories with di
ferent values ofd@1,0#, all in a range allowed by thermody
namic stabilityud@1,0#u,1. Asq increases from zero, trajec
tories move into the first quadrant. Asq decreases from zero
trajectories move initially into the third quadrant. Regardle
of starting direction, all physical trajectories eventually go
infinity in the first quadrant, (y,v)→(`,`), but with finite
uqu. Changing the sign ofd@1,0# has the same effect a
changing the sign ofq and adds nothing new to Fig. 3. An
possible physical nature of these solutions is unclear s
these critical exponents by themselves do not seem to co
spond to those of any known physical system.

Another pair of exponent values of interest isa5 15
8 and

c52 1
2 , where~with d@1,0#5 1

2!

Y~q!511
q

2
1q21

488 623q3

264 600
1

105 351 151q4

24 131 520
1¯ ,

~A15!

and

f ~y,v !5~2132 300v2120 160v31848 925vy

1739 200v2y2507 150y211 413 300vy2

2105 984v2y222 009 280y32553 968vy3

22 453 824y42232 128vy42918 528y5

2105 984y6!/@105~2420v12415y1192vy

11364y21192y3!#. ~A16!

FIG. 4. Family of solution trajectories in (y,v) space with
d@0,0#5d@2,0#51 and various values ofd@1,0# for the critical ex-
ponentsa5

15
8 and c52

1
2 . The limit of thermodynamic stability

corresponds toud@1,0#u50.7627. Solutions start from the origi
(q50) and move into the first quadrant forq.0 and into the third
quadrant forq,0. All the physical trajectories eventually hit th
curve of singularities where the denominatorf (y,v)50 and where
the third derivative ofY diverges, but withuqu remaining finite.
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This particularf (y,v) is more complicated than the one
Eq. ~A14! by virtue of a denominator that is zero along
curve in (y,v) space. This curve of singularities, shown
Fig. 4, results in a new class of singular solutions. Figur
also shows a family of solution trajectories with several v
ues ofd@1,0# ~we requireud@1,0#u,A210/19, by thermody-
namic stability!. The solution trajectories eventually all en
counter the curve of singularities where the third derivat
of Y diverges. One way to avoid this nonanalyticity would
n
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e

to have the curve of singularities crossed by a curve of z
numerator off (y,v), resulting in a cancellation of singulari
ties. However, there are no such crossings, other than a
origin, and one point on the negativey axis. The latter is not
physically relevant. Again, any physical significance of the
critical exponents by themselves is unclear. Complete s
tions for the boundary functionsY(0,z) for the exponent

values (a,b)5(2,3
2 ) and ~15

8 , 25
16! are given in Ref.@5# and

will not be restated here.
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